Formulas:

Mechanics

Motion in a non-inertial frame:	$\mathrm{mdv} / \mathrm{dt}=-\partial \mathrm{U} / \partial \mathbf{r}-\mathrm{md} \mathbf{V} / \mathrm{dt}+\mathrm{mr} \times \mathrm{d} \mathbf{\Omega} / \mathrm{dt}-2 \mathrm{~m} \boldsymbol{\Omega} \times \mathbf{v}-\mathrm{m} \boldsymbol{\Omega} \times(\boldsymbol{\Omega} \times \mathbf{r})$
Lagrange's equations:	$\begin{aligned} & \frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{j}}\right)-\frac{\partial L}{\partial q_{j}}=0, \frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{j}}\right)-\frac{\partial L}{\partial q_{j}}=Q_{j} \\ & Q_{j}=-\frac{\partial U}{\partial q_{j}} \quad \text { or } \quad Q_{j}=-\frac{\partial U}{\partial q_{j}}+\frac{d}{d t}\left(\frac{\partial U}{\partial \dot{q}_{j}}\right) \end{aligned}$
Hamilton’s equations:	$\dot{q}_{i}=\frac{\partial H}{\partial p_{i}}, \quad \dot{p}_{i}=-\frac{\partial H}{\partial q_{i}}, \quad H(q, p, t)=\sum_{i} p_{i} \dot{q}_{i}-L, \quad \frac{\partial L}{\partial \dot{q}_{j}}=p_{j}$
Lagrange multipliers:	$\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{k}}\right)-\frac{\partial L}{\partial q_{k}}=\sum_{l} \lambda_{l} a_{l k}, \sum_{\vec{k}} a_{l} d q_{k}+a_{i k} d t=0, \quad l=1, \cdots, m$
Small oscillations:	$\begin{aligned} & L=\frac{1}{2} \sum_{i j}\left(T_{i j} \dot{q}_{i} \dot{q}_{j}-k_{i j} q_{i} q_{j}\right) \quad \text { with } \quad T_{i j}=T_{j i}, \quad k_{i j}=k_{j i} \\ & \sum_{j}\left(k_{i j}-\omega_{a}^{2} T_{i j}\right) \quad A_{j a}=0 \\ & q_{j}=\operatorname{Re} \sum_{a}\left(C_{a} A_{j a} e^{i \omega_{a}}\right) \end{aligned}$
Motion in a central potential:	$\begin{aligned} & m \ddot{r}-\frac{M^{2}}{m r^{3}}=f(r), \quad \text { or } m r \ddot{r}=-\frac{\partial U_{e f f}(r)}{\partial r}, \text { with } f(r)=-\frac{\partial U(r)}{\partial r} \\ & \frac{M^{2} u^{2}}{m}\left(\frac{d^{2} u}{d \phi^{2}}+u\right)=-f(u) \\ & \dot{r}= \pm \sqrt{\frac{2}{m}\left(E-U_{e f(r)}(r)\right.}, \quad \phi=\phi_{0}-\int \frac{M d u}{\sqrt{2 m\left(E-U_{e f f}(u)\right)}} \end{aligned}$ Kepler orbit: $\frac{p}{r}=1+e \cos \left(\phi-\phi_{0}\right)$
Two interacting particles:	CM frame: $L=\frac{1}{2} \mu \dot{r}^{2}-U(r), \quad \mu=\frac{m_{1} m_{2}}{m_{1}+m_{2}}, \quad r=r_{1}-r_{2}$

Relativistic kinematics:	$\left(\begin{array}{l}x_{0}^{\prime} \\ x_{1}^{\prime} \\ x_{2}^{\prime} \\ x_{3}^{\prime}\end{array}\right)=\left(\begin{array}{cccc}\gamma & -\gamma \beta & 0 & 0 \\ -\gamma \beta & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)\left(\begin{array}{l}x_{0} \\ x_{1} \\ x_{2} \\ x_{3}\end{array}\right),\left(\begin{array}{l}x_{0} \\ x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=\left(\begin{array}{cccc}\gamma & \gamma \beta & 0 & 0 \\ \gamma \beta & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)\left(\begin{array}{l}x_{0}^{\prime} \\ x_{1}^{\prime} \\ x_{2}^{\prime} \\ x_{3}^{\prime}\end{array}\right)$		
4-vectors:	$\begin{aligned} & \left(u_{0}, \boldsymbol{u}\right)=\left(\gamma c, \gamma \frac{d r}{d t}\right)=\left(\frac{d x_{0}}{d \tau} ; \frac{d r}{d \tau}\right), \quad\left(u_{0}, u\right) \cdot\left(u_{0}, u\right)=c^{2} \\ & \left(p_{0}, p\right)=\left(m u_{0}, m u\right)=\left(\gamma m c, \gamma m \frac{d r}{d t}\right), \quad p_{0}=\frac{E}{c}=\gamma m c, \quad p=\gamma m \frac{d r}{d t} \\ & \left(p_{0}, p\right) \cdot\left(p_{0}, p\right)=m^{2} c^{2} \Rightarrow E^{2}=m^{2} c^{4}+p^{2} c^{2} \end{aligned}$		
Transformation of velocities:	$\mathrm{u}^{\prime} \\|=\left(u_{\\|}-\mathrm{v}\right) /\left(1-\mathrm{v} \cdot \mathbf{u} / \mathrm{c}^{2}\right), \mathrm{u}^{\prime} \perp=\mathrm{u}_{\perp} /\left(\gamma\left(1-\mathbf{v} \cdot \mathbf{u} / \mathrm{c}^{2}\right)\right)$		
Doppler shift:	$\omega^{\prime}=\gamma \omega(1-(\mathrm{v} / \mathrm{c}) \cos \theta)$		
Relativistic collisions:	For each component p_{μ} of the 4-vector ($\mathrm{p}_{0}, \mathrm{p}_{1}, \mathrm{p}_{2}, \mathrm{p}_{3}$) we have $\sum_{\text {particles_in }} p_{\mu}=\sum_{\text {panticles_out }} p_{\mu}, \text { or } \sum_{i}\left(p_{i}\right)_{\mu}=\sum_{j}\left(p_{j}\right)_{\mu} \text {. }$ For transformations between reference frames we have $\left(P_{0}, P\right) \cdot\left(P_{0}, P\right)=\left(P_{0}^{\prime}, P^{\prime}\right) \cdot\left(P_{0}^{\prime}, P^{\prime}\right)$ where $\quad P_{0}=\sum_{\text {particles }} p_{0}$ and $P=\sum_{\text {partices }} p$.		

E\&M

Maxwell's equations:	$\begin{array}{lrrl} \overrightarrow{\mathbf{v}} \cdot \boldsymbol{E}=\frac{\rho}{\varepsilon_{0}}, & \overrightarrow{\mathbf{v}} \times \boldsymbol{E}=-\frac{\partial B}{\partial t} & \overrightarrow{\mathbf{v}} \cdot \boldsymbol{B}=0, & \overrightarrow{\mathbf{v}} \times \boldsymbol{B}=\mu_{0} \boldsymbol{j}+\frac{1}{c^{2}} \frac{\partial E}{\partial t} \\ \overrightarrow{\mathbf{v}} \cdot D=\rho_{f}, & \overrightarrow{\mathbf{v}} \times \boldsymbol{E}=-\frac{\partial \boldsymbol{B}}{\partial t} & \overrightarrow{\mathbf{v}} \cdot \boldsymbol{B}=0, & \overrightarrow{\mathbf{v}} \times H=\boldsymbol{j}_{f}+\frac{\partial D}{\partial t} \\ \text { lih materials: } & \overrightarrow{\mathbf{v}} \cdot \boldsymbol{E}=\frac{\rho_{f}}{\varepsilon}, & \overrightarrow{\mathbf{v}} \times \boldsymbol{E}=-\frac{\partial B}{\partial t} \\ & \overrightarrow{\mathbf{v}} \cdot \boldsymbol{B}=0, & \overrightarrow{\mathbf{v}} \times \boldsymbol{B}=\mu_{f}+\mu \varepsilon \frac{\partial \boldsymbol{E}}{\partial t} \end{array}$
Dipole field and potential:	$\begin{aligned} & E\left(r^{\prime}\right)=\left[\frac{1}{4 \pi \varepsilon_{0}}\right]_{S I} \frac{1}{r^{3}}[3(\boldsymbol{p} \cdot \hat{r}) \hat{r}-\boldsymbol{p}] \quad \phi\left(\boldsymbol{r}^{\prime}\right)=\left[\frac{1}{4 \pi \varepsilon_{0}}\right]_{S I} \frac{p \cdot \hat{r}}{r^{2}} \\ & \mathbf{F}=\nabla(\mathbf{p} \cdot \mathbf{E}), \tau=\mathbf{p} \times \mathbf{E}, \mathrm{U}=-(\mathbf{p} \cdot \mathbf{E}) \\ & m=I A \hat{n}=\frac{1}{2} \int_{V} \boldsymbol{r} \times \boldsymbol{j}(\boldsymbol{r}) d V \\ & \boldsymbol{B}(r)=\frac{\mu_{0}}{4 \pi} \frac{3(\boldsymbol{m} \cdot \hat{r}) \hat{r}-\boldsymbol{m}}{r^{3}}, \quad A\left(\boldsymbol{r}^{\prime}\right)=\frac{\mu_{0}}{4 \pi} \frac{m \times \hat{r}}{r^{2}}, \\ & \boldsymbol{F}=\overrightarrow{\mathbf{V}}(\boldsymbol{m} \cdot \boldsymbol{B}), \quad \boldsymbol{\tau}=\boldsymbol{m} \times \boldsymbol{B} \end{aligned}$
Boundary conditions:	
Multipole expansion:	$\begin{aligned} & \phi(r)=\left[\frac{1}{4 \pi \varepsilon_{0}}\right]_{S l} \left\lvert\, \frac{1}{r} \int_{V^{\prime}} \rho\left(r^{\prime}\right) d V^{\prime}+\frac{1}{r^{2}} \hat{r} \cdot \int_{V^{\prime}} \rho\left(\boldsymbol{r}^{\prime}\right) r^{\prime} d V^{\prime}\right. \\ & \left.+\frac{1}{r^{3}} \int_{V^{\prime \prime}} \frac{3\left(\hat{r} \cdot \boldsymbol{r}^{\prime}\right)^{2}-r^{2}}{2} \rho\left(r^{\prime}\right) d V^{\prime}+\cdots\right] \\ & =\left[\frac{1}{4 \pi \varepsilon_{0}}\right]_{S z}\left[\frac{Q}{r}+\frac{p \cdot \hat{r}}{r^{2}}+\frac{1}{2 r^{s}} \sum_{i j} 3 x_{i} x_{j} Q_{i j}+\cdots\right] \\ & Q_{i j}=\int\left(x_{i}^{\prime} x_{j}^{\prime}-\frac{1}{3} \delta_{i j} r^{2}\right) \quad \rho\left(\boldsymbol{r}^{\prime}\right) d V^{\prime}, \quad Q_{j i}=Q_{i j}, \quad \sum_{i} Q_{i i}=0 \\ & W=q \phi(0)-\boldsymbol{p} \cdot E(0)-\left.\frac{1}{2} \sum_{i} \sum_{j} Q_{i j} \frac{\partial E_{j}}{\partial x_{i}}\right\|_{x_{i}=0}+\cdots \end{aligned}$
Method of images:	Grounded conducting sphere: place $q^{\prime}=-q \frac{R}{d} \text { at } d t=\frac{R^{2}}{d}$ to make the sphere an equipotential with $\phi=0$.

Boundary value problems:	$\phi(r, \theta)=\sum_{n=0}^{\infty}\left(A_{n} r^{n}+B_{n} r^{-(n+1)}\right) P_{n}(\cos \theta)$			
Dielectrics:	$\rho=\rho_{f}+\rho_{p}, \quad \sigma=\sigma_{f}+\sigma_{p}, \quad \rho_{p}=-\overrightarrow{\mathbf{v}} \cdot \boldsymbol{P}, \quad \sigma_{p}=\boldsymbol{P} \cdot \hat{\boldsymbol{n}} \quad D=\varepsilon_{0} E+\boldsymbol{P}$ lih dielectrics: $P=\varepsilon_{0} \chi_{e} E, D=\varepsilon_{0}\left(1+\chi_{e}\right) E=\varepsilon_{0} k_{e} E=\varepsilon E$, $\vec{\nabla} \cdot D=\rho_{f}, \quad \nabla^{2} \phi=-\frac{\rho_{f}}{\varepsilon}$			
Magnetic materials:	$\begin{aligned} & j=j_{f}+j_{m}, \quad k=k_{f}+k_{m}, \quad j_{m}=\overrightarrow{\mathbf{v}} \times M, \quad k_{m}=M \times \hat{n}, \\ & \mathbf{H}=\mathbf{B} / \mu_{0}-\mathbf{M} \end{aligned}$ lih magnetic materials: $M=\chi_{m} H$, $B=\mu_{0}(H+M)=\mu_{0}\left(1+\chi_{m}\right) H=\mu_{0} k_{m} H=\mu H, \vec{v} \times H=j_{f}$			
Quasi-static situations:	$\begin{aligned} \varepsilon_{i} & =-\sum_{j} M_{i j} \frac{\partial I_{j}}{\partial t} \quad \varepsilon=-L \frac{\partial I}{\partial t} \quad U=\frac{1}{2} \sum_{m=1}^{N} F_{m} I_{m} \\ U & =\frac{1}{2 \mu_{0}} \int_{a \mathbb{I}, p p a s e} B \cdot B d V \end{aligned}$			
Electrodynamics:	$\overrightarrow{\mathrm{v}} \times\left(E+\frac{\partial A}{\partial t}\right)=0 \Rightarrow E+\frac{\partial A}{\partial t}=-\overrightarrow{\mathrm{v}} \phi$			
Poynting's theorem:	$E \cdot j=-\frac{\partial u}{\partial t}-\overrightarrow{\mathbf{v}} \cdot \boldsymbol{S} \quad u=\frac{1}{2 \mu_{0}} B^{2}+\frac{\varepsilon_{0}}{2} E^{2} \quad S=\frac{1}{\mu_{0}} E \times B$			
The Lorentz gauge:	$\vec{\nabla} \cdot \boldsymbol{A}=-\frac{1}{c^{2}} \frac{\partial \phi}{\partial t}$			
The wave equation:	$\begin{array}{ll} \left(\nabla^{2}-\mu \varepsilon \frac{\partial^{2}}{\partial t^{2}}\right) E=0 & \left(\nabla^{2}-\mu \varepsilon \frac{\partial^{2}}{\partial t^{2}}\right) B=0 \\ \left(\nabla^{2}-\mu \varepsilon \frac{\partial^{2}}{\partial t^{2}}-\mu \sigma_{c} \frac{\partial}{\partial t}\right) E=0, & \left(\nabla^{2}-\mu \varepsilon \frac{\partial^{2}}{\partial t^{2}}-\mu \sigma_{c} \frac{\partial}{\partial t}\right) B=0, \\ k^{2}=i \mu \sigma_{c} \omega+\mu \varepsilon \omega^{2}=\mu \varepsilon(\omega) \omega^{2} & \end{array}$			
Electromagnetic radiation:	$\begin{aligned} & E(\boldsymbol{r}, t)=-\left[\frac{1}{4 \pi \varepsilon_{0}}\right]_{S I} \frac{q}{c^{2} r^{\prime \prime}} \boldsymbol{a}_{\perp}\left(t-\frac{r^{\prime \prime}}{c}\right), \quad \boldsymbol{r}^{\prime \prime}=\boldsymbol{r}-\boldsymbol{r}^{\prime}\left(t-\frac{\left\|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right\|}{c}\right), \\ & B=\frac{\hat{r}^{\prime \prime}}{c} \times E \end{aligned}$			
Larmor formula:	$P=\oint \vec{S} \cdot \hat{n} d A=\frac{2}{3} \frac{e^{2} a^{2}}{c^{3}}=\mathrm{q}^{2} \mathrm{a}^{2} /\left(6 \pi \varepsilon_{0} \mathrm{c}^{3}\right)$			
4-vectors:	$\mathrm{j}^{\mu}=(\mathrm{c} \rho \mathbf{,} \mathbf{j})=4$-vector current, $\mathrm{A}^{\mu}=(\phi / \mathrm{c}, \mathbf{A})=4$-vector potential			
Transformation of the fields:	$\mathbf{E}_{\\|}^{\prime}=\mathbf{E}_{\\|}, \mathbf{B}^{\prime}\| \|=\mathbf{B}_{\\|}, \mathbf{E}^{\prime}{ }_{\perp}=\gamma(\mathbf{E}+\mathbf{v} \times \mathbf{B})_{\perp}, \mathbf{B}^{\prime} \perp=\gamma\left(\mathbf{B}-\left(\mathbf{v} / \mathrm{c}^{2}\right) \times \mathbf{E}\right)_{\perp}$			
Lorentz invariants:	$\mathbf{E}^{2}-\mathrm{c}^{2} \mathbf{B}^{2},(\mathbf{E} \cdot \mathbf{B})^{2}$			

Quantum Mechanics

WKB approximation:	$\oint \mathrm{pdx}=\oint \hbar \mathrm{kdx}=(\mathrm{n}+1 / 2) \mathrm{h}, \mathrm{k}^{2}=\left(2 \mathrm{~m} / \hbar^{2}\right)(\mathrm{E}-\mathrm{V}(\mathrm{x})),$ $\mathrm{V}(\mathrm{x})$ finite everywhere. In regions where $\mathrm{E}>\mathrm{V}(\mathrm{x})$ we have $\phi(x)=\mathrm{Ak}^{-1 / 2} \exp \left(\pm \mathrm{i}^{\mathrm{x}} \mathrm{k}\left(\mathrm{x}^{\prime}\right) \mathrm{dx} \mathrm{x}^{\prime}\right)$, and in regions where $\mathrm{E}<\mathrm{V}(\mathrm{x})$ we have $\phi(x)=A \rho^{-1 / 2} \exp \left(\pm \int^{\mathrm{x}} \rho \mathrm{k}\left(\mathrm{x}^{\prime}\right) \mathrm{dx} \mathrm{x}^{\prime}\right)$.
Harmonic oscillator:	$\begin{aligned} & \phi_{0}(x)=\left(\frac{m \omega}{\pi \hbar}\right)^{\frac{1}{4}} \exp \left(-\frac{1}{2} \frac{m \omega x^{2}}{\hbar}\right) \\ & \phi_{1}(x)=\left(\frac{4}{\pi}\left(\frac{m \omega}{\hbar}\right)^{3}\right)^{\frac{1}{\hbar}} x \exp \left(-\frac{1}{2} \frac{m \omega x^{2}}{\hbar}\right) \\ & \phi_{2}(x)=\left(\frac{m \omega}{4 \pi \hbar}\right)^{\frac{1}{4}}\left[2 \frac{m \omega}{\pi} x^{2}-1\right] \exp \left(-\frac{1}{2} \frac{m \omega x^{2}}{\pi}\right) \\ & \phi_{n}(x)=\frac{1}{\sqrt{n!}} \frac{1}{\sqrt{2 \pi}}\left(\frac{\beta}{\sqrt{\pi}}\right)^{\frac{1}{2}} H_{n}(\eta) \exp \left(-\frac{1}{2} \eta^{2}\right), \text { where } \eta=\sqrt{\frac{m \omega}{\lambda}} x=\beta x \end{aligned}$
Angular momentum:	$\begin{aligned} & {\left[\mathrm{J}_{\mathrm{i},} \mathrm{~J}_{\mathrm{j}}\right]=\varepsilon_{\mathrm{ijk}} \mathrm{i} \hbar \mathrm{~J}_{\mathrm{k}},\left[\mathrm{~J}_{\mathrm{i}}, \mathrm{~J}^{2}\right]=0, \mathrm{~J}^{2}\left\|\mathrm{k}, \mathrm{j}, \mathrm{~m}>=\mathrm{j}(\mathrm{j}+1) \hbar^{2}\right\| \mathrm{k}, \mathrm{j}, \mathrm{~m}>,} \\ & \mathrm{J}_{z}\|\mathrm{k}, \mathrm{j}, \mathrm{~m}>=\mathrm{m} \hbar\| \mathrm{k}, \mathrm{~m}, \mathrm{~m}> \\ & \mathrm{J}_{+}=\mathrm{J}_{\mathrm{x}}+\mathrm{ij} \mathrm{~J}_{\mathrm{y}}, \mathrm{~J}=\mathrm{J}_{+}=\mathrm{J}_{\mathrm{x}}-\mathrm{i} \mathrm{~J}_{\mathrm{y}}, \\ & \mathrm{~J}_{ \pm}\left\|\mathrm{k}, \mathrm{j}, \mathrm{~m}>=[\mathrm{j}(\mathrm{j}+1)-\mathrm{m}(\mathrm{~m} \pm 1)]^{1 / 2} \hbar\right\| \mathrm{k}, \mathrm{j}, \mathrm{~m} \pm 1>. \end{aligned}$
Orbital angular momentum:	$\begin{aligned} & L^{2}=-\hbar^{2}\left(\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}}\right) \quad L_{z}=\frac{\hbar}{i} \frac{\partial}{\partial \phi} \\ & Y_{00}=\frac{1}{\sqrt{4 \pi}}, \quad Y_{1 \pm 1}(\theta, \phi)=\mp \sqrt{\frac{3}{8 \pi}} \sin \theta e^{ \pm i \phi}, \quad Y_{10}(\theta, \phi)=\sqrt{\frac{3}{4 \pi}} \cos \theta \\ & Y_{2 \pm 2}=\sqrt{\frac{15}{32 \pi}} \sin ^{2} \theta e^{ \pm 2 \phi}, \quad Y_{2 \pm 1}(\theta, \phi)=\mp \sqrt{\frac{15}{8 \pi}} \sin \theta \cos \theta e^{ \pm \phi}, \\ & Y_{20}(\theta, \phi)=\sqrt{\frac{5}{16 \pi}}\left(3 \cos ^{2} \theta-1\right) \end{aligned}$
Spin 1/2:	$\begin{array}{ll} \left(S_{z}\right)=\frac{\hbar}{2}\left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right) & \left(S_{x}\right)=\frac{\hbar}{2}\left(\begin{array}{ll} 0 & 1 \\ 1 & 0 \end{array}\right) \\ \left(S_{y}\right)=\frac{\hbar}{2}\left(\begin{array}{cc} 0 & -i \\ i & 0 \end{array}\right) & \left(S^{2}\right)=\frac{3 \hbar^{2}}{4}\left(\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right) \end{array}$
Particle in a central potential:	$\mathrm{H}=-\left(\hbar^{2} /(2 \mathrm{~m})\right)(1 / \mathrm{r})\left(\partial^{2} / \partial \mathrm{r}^{2}\right) \mathrm{r}+\mathrm{L}^{2} /\left(2 \mathrm{mr}^{2}\right)+\mathrm{V}(\mathrm{r})$,

	$\begin{aligned} & \psi_{\mathrm{klm}}(\mathrm{r}, \theta, \phi)=\mathrm{R}_{\mathrm{kl}}(\mathrm{r}) \mathrm{Y}_{\mathrm{lm}}(\theta, \phi)=\left[\mathrm{u}_{\mathrm{kl}}(\mathrm{r}) / \mathrm{r}\right] \mathrm{Y}_{\mathrm{lm}}(\theta, \phi), \\ & {\left[-\left(\hbar^{2} /(2 \mathrm{~m})\right)\left(\partial^{2} / \partial \mathrm{r}^{2}\right)+\hbar^{2} \mathrm{l}(\mathrm{l}+1) /\left(2 \mathrm{mr}^{2}\right)+\mathrm{V}(\mathrm{r})\right] \mathrm{u}_{\mathrm{kl}}(\mathrm{r})=\mathrm{E}_{\mathrm{kl}} \mathrm{u}_{\mathrm{kl}}(\mathrm{r}) .} \end{aligned}$
Stationary perturbation theory:	$\begin{aligned} & \mathrm{E}_{1} \mathrm{p}=<\phi_{\mathrm{p}}\|\mathrm{~W}\| \phi_{\mathrm{p}}>,\left\|\psi_{\mathrm{p}}^{1>}>\Sigma_{\mathrm{p}^{\prime} \neq \mathrm{p}, \mathrm{i}} \mathrm{~b}_{\mathrm{p}^{\mathrm{i}}}\right\| \phi_{\mathrm{p}^{\mathrm{i}}>}> \\ & \text { where } \mathrm{b}_{\mathrm{p}^{\mathrm{i}}}=<\phi_{\mathrm{p}^{\mathrm{i}}}\|\mathrm{~W}\| \phi_{\mathrm{p}}>/\left(\mathrm{E}_{0}^{\mathrm{p}}-\mathrm{E}_{0} \mathrm{p}^{\mathrm{p}}\right), \\ & \mathrm{E}_{2} \mathrm{p}=\Sigma_{\mathrm{p}^{\prime} \neq \mathrm{p}, \mathrm{i}}\left\|<\phi_{\mathrm{p}^{\mathrm{i}}}\right\| \mathrm{W}\left\|\phi_{\mathrm{p}}>\right\|^{2} /\left(\mathrm{E}_{0}^{\mathrm{p}}-\mathrm{E}_{0} \mathrm{p}^{\prime}\right) \end{aligned}$
Time- dependent perturbation theory: Fermi's golden rule:	$\begin{aligned} & \mathrm{P}_{\mathrm{if}}(\mathrm{t})=\left(1 / \hbar^{2}\right)\left\|\int_{0}^{\mathrm{t}} \exp \left(\mathrm{i} \omega_{\mathrm{fit}}\right) \mathrm{W}_{\mathrm{fi}}\left(\mathrm{t}^{\prime}\right) \mathrm{dt}\right\|^{2} \\ & \text { Let } \mathrm{W}(\mathrm{t})=\mathrm{W} \exp (\pm \mathrm{i} \omega \mathrm{t}), \\ & \text { then } \mathrm{w}(\mathrm{i}, \beta \mathrm{E})=(2 \pi / \hbar) \rho(\beta, \mathrm{E})\left\|\mathrm{W}_{\mathrm{Ei}}\right\|^{2} \delta_{\mathrm{E}-\mathrm{Ei}, \hbar \omega}, \\ & \text { where } \mathrm{W}_{\mathrm{Ei}}=<\phi_{\mathrm{E}}\|\mathrm{~W}\| \phi_{\mathrm{i}}>. \end{aligned}$
Scattering:	$\begin{aligned} & \text { Asymptotic form: } \phi_{\mathrm{k}}(\mathrm{r})=\exp (\mathrm{ikz})+\mathrm{f}_{\mathrm{k}}(\theta) \exp (\mathrm{ikr}) / \mathrm{r} . \\ & \mathrm{f}_{\mathrm{k}}(\theta)=(1 / \mathrm{k}) \Sigma_{\mathrm{l}=0^{\infty}}(2 \mathrm{l}+1) \exp \left(\mathrm{i} \delta_{\mathrm{l}}\right) \sin \delta_{\mathrm{l}} \mathrm{P}_{1}(\cos \theta), \\ & \mathrm{d} \sigma_{\mathrm{k}} / \mathrm{d} \Omega=\left\|\mathrm{f}_{\mathrm{k}}(\theta)\right\|^{2}=\left(1 / \mathrm{k}^{2}\right)\left\|\Sigma_{\mathrm{l}}=0^{\infty}(2 \mathrm{l}+1) \exp \left(\mathrm{i} \delta_{\mathrm{l}}\right) \sin \delta_{\mathrm{l}} \mathrm{Pl}(\cos \theta)\right\|^{2} . \\ & \sigma_{\mathrm{k}}^{\mathrm{B}}(\theta, \phi)=\sigma_{\mathrm{k}}{ }^{\mathrm{B}}\left(\mathbf{k}, \mathbf{k}^{\prime}\right)=\left[\mu^{2} /\left(4 \pi^{2} \hbar^{4}\right)\right]\left\|\mathrm{d}^{3} \mathrm{r}^{\prime} \exp \left(-\mathrm{iq} \cdot \mathrm{r}^{\prime}\right) \mathrm{V}\left(\mathbf{r}^{\prime}\right)\right\|^{2}, \\ & \text { where } \mathbf{q}=\mathbf{k}-\mathbf{k}^{\prime}, \mathbf{k}=\mu \mathbf{v} \mathrm{v} / \hbar, \mathbf{k}^{\prime}=\mu \mathrm{v}_{0} / \hbar\left(\mathbf{k}^{\prime} / \mathrm{k}^{\prime}\right), \\ & \text { and is the reduced mass. } \end{aligned}$

Vector identities:
Note: A, B, C, and \mathbf{D} are vectors.
$\mathbf{A} \cdot(\mathbf{B} \times \mathbf{C})=\mathbf{B} \cdot(\mathbf{C} \times \mathbf{A})=\mathbf{C} \cdot(\mathbf{A} \times \mathbf{B})$
$\mathbf{A} \times(\mathbf{B} \times \mathbf{C})=(\mathbf{A} \cdot \mathbf{C}) \mathbf{B}-(\mathbf{A} \cdot \mathbf{B}) \mathbf{C}$
$(\mathbf{A} \times \mathbf{B}) \cdot(\mathbf{C} \times \mathbf{D})=(\mathbf{A} \cdot \mathbf{C})(\mathbf{B} \cdot \mathbf{D})-(\mathbf{A} \cdot \mathbf{D})(\mathbf{B} \cdot \mathbf{C})$
Note: \mathbf{A} and \mathbf{B} are vector fields, ψ and ϕ are scalar fields.
$\nabla(\phi \psi)=\phi \nabla \psi+\psi \nabla \phi$
$\boldsymbol{\nabla} \cdot(\psi \mathbf{A})=\mathbf{A} \cdot \nabla \psi+\psi \nabla \cdot \mathbf{A}$
$\nabla \times(\psi \mathbf{A})=\psi \nabla \times \mathbf{A}-\mathbf{A} \times \nabla \psi$
$\nabla(\mathbf{A} \cdot \mathbf{B})=\mathbf{A} \times(\nabla \times \mathbf{B})+\mathbf{B} \times(\nabla \times \mathbf{A})+(\mathbf{A} \cdot \nabla) \mathbf{B}+(\mathbf{B} \cdot \nabla) \mathbf{A}$
$\nabla \cdot(\mathbf{A} \times \mathbf{B})=\mathbf{B} \cdot(\nabla \times \mathbf{A})-\mathbf{A}(\nabla \times \mathbf{B})$
$\nabla \times(\mathbf{A} \times \mathbf{B})=\mathbf{A}(\nabla \cdot \mathbf{B})-\mathbf{B}(\nabla \cdot \mathbf{A})+(\mathbf{B} \cdot \nabla) \mathbf{A}-(\mathbf{A} \cdot \nabla) \mathbf{B}$
$(\mathbf{A} \cdot \nabla) \mathbf{A}=\frac{1}{2} \nabla|\mathbf{A}|^{2}+(\nabla \times \mathbf{A}) \times \mathbf{A}$
$\nabla \times \nabla \phi=0$
$\nabla \cdot(\nabla \times \mathbf{A})=0$
$\nabla \cdot \nabla \phi=\nabla^{2} \phi$
$\nabla \times(\nabla \times \mathbf{A})=\nabla(\nabla \cdot \mathbf{A})-\nabla^{2} \mathbf{A}$

Integral relations:

$$
\begin{array}{ll}
\int_{V}(\nabla \cdot \mathbf{F}) d V=\oint_{S} \mathbf{F} \cdot d \mathbf{a} & \text { Divergence theorem } \\
\int_{S}(\nabla \times \mathbf{F}) \cdot d \mathbf{a}=\oint_{C} \mathbf{F} \cdot d \mathbf{s} & \text { Stokes' theorem } \\
\int_{S} \phi(\nabla \psi) \cdot d \mathbf{a}=\int_{V}\left[\phi \nabla^{2} \psi+(\nabla \phi) \cdot(\nabla \psi)\right] d V . & \text { Green's first identity } \\
\int_{V}\left(\phi \nabla^{2} \psi-\psi \nabla^{2} \phi\right) d V=\int_{S}(\phi \nabla \psi-\psi \nabla \phi) \cdot d \mathbf{a} . & \text { Green's second identity }
\end{array}
$$

Gradient, divergence, curl, and Laplacian:
Note: A is a vector fields and f is a scalar fields.
Cartesian coordinates:

∇f	$=$	$\frac{\partial f}{\partial x} \hat{\mathbf{x}}+\frac{\partial f}{\partial y} \hat{\mathbf{y}}+\frac{\partial f}{\partial z} \hat{\mathbf{z}}$
$\nabla \cdot \mathbf{A}$	$=$	$\frac{\partial A_{x}}{\partial x}+\frac{\partial A_{y}}{\partial y}+\frac{\partial A_{z}}{\partial z}$
$\nabla \times \mathbf{A}$	$=$$\left(\frac{\partial A_{z}}{\partial y}-\frac{\partial A_{y}}{\partial z}\right) \hat{\mathbf{x}}+$ $\left(\frac{\partial A_{z}}{\partial \tilde{x}_{y}}-\frac{\partial A_{z}}{\partial x}\right) \hat{\mathbf{y}}+$ $\left(\frac{\partial A_{z}}{\partial x}-\frac{\partial A_{z}}{\partial y}\right) \hat{\mathbf{z}}$	
$\nabla^{2} f$	$=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}+\frac{\partial^{2} f}{\partial z^{2}}$	

Cylindrical coordinates:

∇f		$\frac{\partial f}{\partial \rho} \hat{\boldsymbol{\rho}}+\frac{1}{\rho} \frac{\partial f}{\partial \phi} \hat{\boldsymbol{\phi}}+\frac{\partial f}{\partial z} \hat{\boldsymbol{z}}$
$\nabla \cdot \mathbf{A}$	$=$	$\frac{1}{\rho} \frac{\partial \rho A_{\rho}}{\partial \rho}+\frac{1}{\rho} \frac{\partial A_{\phi}}{\partial \phi}+\frac{\partial A_{z}}{\partial z}$
$\nabla \times \mathbf{A}$	$=$	$\begin{array}{cc} \left(\frac{1}{\rho} \frac{\partial A_{z}}{\partial \boldsymbol{q}}-\frac{\partial A_{\phi}}{\partial z}\right) \hat{\boldsymbol{\rho}} & + \\ \left(\frac{\partial A_{\rho}}{\partial z}-\frac{\partial A_{z}}{\partial \rho}\right) \hat{\boldsymbol{\phi}} & + \\ \frac{1}{\rho}\left(\frac{\partial \rho A_{\phi}}{\partial \rho}-\frac{\partial A_{\rho}}{\partial \phi}\right) \hat{\boldsymbol{z}} & \end{array}$
$\nabla^{2} f$	$=$	$\frac{1}{\rho} \frac{\partial}{\partial \rho}\left(\rho \frac{\partial f}{\partial \rho}\right)+\frac{1}{\rho^{2}} \frac{\partial^{2} f}{\partial \phi^{2}}+\frac{\partial^{2} f}{\partial z^{2}}$

Spherical coordinates:

∇f	$=$	$\frac{\partial f}{\partial r} \hat{\boldsymbol{r}}+\frac{1}{r} \frac{\partial f}{\partial \theta} \hat{\boldsymbol{\theta}}+\frac{1}{r \sin \phi} \frac{\partial f}{\partial \phi} \hat{\boldsymbol{\phi}}$
$\nabla \cdot \mathbf{A}$	$=$	$\frac{1}{r^{2}} \frac{\partial r^{2} A_{r}}{\partial r}+\frac{1}{r \sin \theta} \frac{\partial A_{\theta} \sin \theta}{\partial \theta}+\frac{1}{r \sin \theta} \frac{\partial A_{\phi}}{\partial \phi}$
$\nabla \times \mathbf{A}$	$=$$\frac{1}{r \sin \theta}\left(\frac{\partial A_{\phi} \sin \theta}{\partial \theta}-\frac{\partial A_{\theta}}{\partial \phi}\right) \hat{\boldsymbol{r}}+$ $\left(\frac{1}{r \sin \theta} \frac{\partial A_{r}}{\partial \phi}-\frac{1}{r} \frac{\partial r A_{\phi}}{\partial r}\right) \hat{\boldsymbol{\theta}}+$ $\frac{1}{r}\left(\frac{\partial r A_{\theta}}{\partial r}-\frac{\partial A_{r}}{\partial \theta}\right) \hat{\boldsymbol{\phi}}$	
$\nabla^{2} f$	$=\frac{1}{r^{2} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial f}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial f}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} f}{\partial \phi^{2}}}$	

