Formulas for Test 1

wave traveling in the positive x-direction:	$y(x,t) = A\sin(kx - \omega t + \phi)$
wave traveling in the negative x-direction:	$y(x,t) = Asin(kx + \omega t + \phi)$
Double slit or grating with constructive interference:	$dsin\theta = m\lambda$ $m = 0, 1, 2, \dots$
Single Slit with destructive interference:	$wsin\theta = m\lambda$ $m = 1, 2,$
Photoelectric Effect:	$E = hf - \phi$
Time-dependent Shroedinger equation in one dimension:	$\frac{-\hbar^2}{2m}\frac{\partial^2 \psi(x,t)}{\partial x^2} + U(x)\psi(x,t) = i\hbar \frac{\partial \psi(x,t)}{\partial t}$
Time-independent Shroedinger equation in one dimension:	$\frac{-\hbar^2}{2m}\frac{\partial^2 \psi(x,t)}{\partial x^2} + U(x)\psi(x,t) = E\psi(x,t)$
Probability of finding the particle at time t in an interval Δx about the position x :	$ \psi(x,t) ^2 \Delta x$
Particle in an infinite square well:	$E_n = \frac{n^2 \pi^2 \hbar^2}{2mL^2}, n = 1, 2, 3, \dots$ $\psi_n(x, t) = \sqrt{\frac{2}{L}} sin(\frac{n\pi x}{L}) e^{\frac{-iE_n t}{\hbar}}$
Particle in a harmonic well:	$E_n = (n + \frac{1}{2})\hbar\omega = (n + \frac{1}{2})hf, n = 0, 1, 2, \dots$
Spherical coordinates:	$z = r\cos\theta, \ y = r\sin\theta\sin\phi, \ x = r\sin\theta\cos\phi$ $r = \sqrt{x^2 + y^2 + z^2}, \ \tan\theta = \frac{\sqrt{x^2 + y^2}}{z},$ $\tan\phi = \frac{y}{x}$
Orbital angular momentum:	$L^2 = (l(l+1))\hbar^2$ $l = 0, 1, 2,$ $L_z = m\hbar$, m can take on values from - l to l in integer steps
Tunneling transmission coefficient T:	$T = e^{-2bL}$ where $b = \sqrt{\frac{2m(U_0 - E)}{\hbar^2}}$
Hydrogen atom:	$E_n = \frac{m_e e^4}{2\hbar^2 n^2} = \frac{-13.6}{n^2} \text{ eV}$
Hydrogenic atoms:	$E_n = \frac{m_e Z^2 e^4}{2\hbar^2 n^2} = \frac{-Z^2 * 13.6}{n^2} \text{ eV}$
Magnetic moment for orbital angular momentum:	$\mu_z = -\mu_B m$
Magnetic moment for spin angular momentum:	$\mu_z = -2\mu_B m_s$