
Fall 2011 Qualifying Exam 

 

Part II 
 

 

Mathematical tables are provided.  Formula sheets are provided. 

 

Calculators are allowed. 

 

Please clearly mark the problems you have solved and want to be graded.  Mark 

exactly six problems. 

 

 

Physical Constants: 

 

Planck constant:  h = 6.62606896  10
-34

 Js,   = 1.054571628  10
-34

 Js  

Boltzmann constant:  kB = 1.3806504  10
-23

 J/K  

Elementary charge:  e = 1.602176487  10
-19

 C  

Avogadro number:  NA = 6.02214179  10
23

  particles/mol  

Speed of light:  c = 2.99792458  10
8
  m/s  

Electron rest mass:  me = 9.10938215  10
-31

 kg  

Proton rest mass:  mp = 1.672621637  10
-27

 kg  

Neutron rest mass:  mn = 1.674927211  10
-27

 kg  

Bohr radius:  a0 = 5.2917720859  10
-11

 m  

Compton wavelength of the electron:  c = h/(me c) = 2.42631  10
-12

 m 

Permeability of free space:  0 = 4 10
-7

 N/A
2
 

Permittivity of free space:  0 = 1/0c
2
 

Gravitational constant: G = 6.67428  10
-11

 m
3
/(kg s

2
) 

Stefan-Boltzmann constant:   =   5.670 400  10
-8

 W m
-2

 K
-4

 

Wien displacement law constant:  w = 2.897 7685  10
-3

 m K    

 

  



Solve 6 out of the 8 problems!  (All problems carry the same weight)  

 

 

Problem 1: 

(a)  A point charge q rests at the origin.  A natural choice of potentials for this static problem is 

. 

Consider the gauge transformation with 

, 

where k is a constant. 

Calculate the transformed potentials and fields.   Discuss the result. 

 

(b)  Find E and B given the potentials             
 

  
         ,  V = 0.  Which charge or 

current distributions produce these fields?   Can you find a gauge transformation which leaves 

the transformed vector potential             ? 

 

 

 

 

 

 

 

Problem 2: 

Four mass points of mass m move on a circle of radius R.  

Each mass point is coupled to its two neighboring points by a 

spring constant k.   

(a)  Find the Lagrangian of the system, and derive the 

equations of motion of the system.   

(b)  Calculate the eigen-frequencies of the system, and discuss 

the related eigen-vibrations. 

 

 

 

 

 

 

  



Problem 3: 

A proton and a neutron are confined by a three-dimensional potential.  For this problem assume 

that the proton and neutron do not interact with each other, and neglect spin-orbit interactions. 

Both particles have spin ½.  Including the spins, the ground state is four-fold degenerate.   To 

this system we now add the interaction between the magnetic dipole moments of the particles 

described by the interaction Hamiltonian 

          , 

where Sp,  Sn are the spin operators of the proton and neutron, respectively, and k is a positive 

constant.  

(a)  Consider the following operators:  

  
     

             
    . 

where S = Sp + Sn.  State which of these operators commute with H’. 

(b)  Into how many distinct energy levels does the original ground state split in the presence of 

H’?   Calculate the corresponding energies and state their degeneracy.  

We now place the system into a uniform external magnetic field, which points in the positive z-

direction, B = B k.  The spin-spin interaction described by H’ continues to be present and the 

additional interaction Hamiltonian is 

                 

where b is a positive constant. 

(c)  Calculate the corrections to the energies of the states identified in part (b) due to the presence 

of the magnetic field.  

(d)  Sketch a graph of the energy levels as a function of the external magnetic field strength, B, 

including the effects of both H’ and H’B.  Identify the curves with the corresponding states 

identified in part (b). 

 

  



Problem 4: 
A stretched rubber band contracts when heated under constant tension.  Its temperature increases 

when stretched adiabatically.  The equation of state for an idealized rubber band is J = LT, 

where J is the tension in the rubber band, L is its length, T is the absolute temperature and  is a 

constant.  For reversible processes we have for the rubber band TdS = dQrev = cL dT – J dL.  The 

heat capacity of the band at constant length is cL = constant. 

 

Consider a heat engine that uses a rubber band in the three-step cycle shown.   

 

Start with a stretched rubber band of length L0 , tension J0, 

and temperature TA. 

Take the band through a sequence of reversible processes. 

A  B: 

The rubber band is stretched under constant tension J0 to a 

length 2L0 while in contact with a heat reservoir of 

temperature TB.   

B  C: 

While in contact with a heat reservoir of temperature TC the 

tension of the rubber band is increased from J0 to 2J0 at 

constant length 2L0 . 

C  A: 

While in contact with a heat reservoir of temperature TA, 

tension and length decrease linearly from (2J0, 2L0) to (J0, L0). 

(a)  Find the ratios TB/TA and TC/TA.  What is the ratio Thot/Tcold? 

(b)  Find the work done by the heat engine as it moves through one cycle A  B  C  A. 

(c)  During one cycle A  B  C  A, how much heat is extracted from the hot reservoir and 

how much heat is dumped into the cold reservoir? 

(d)  Find the efficiency of this rubber-band heat engine and compare it to the efficiency of a 

Carnot engine operating between the same temperatures. 

 

 

  



Problem 5: 

Two very large metal plates are held a distance d 

apart, one at potential zero and the other at potential 

V0.  A metal sphere of radius a is sliced in two, and 

one hemisphere is placed on the grounded plate, so 

that its potential is likewise zero.  The radius of the 

sphere a is very small compare to the distance d 

between the plates, (a << d), so that you may 

assume that the electric field near the upper is 

constant.  If the region between the plates is filled with a weakly conducting material of 

conductivity σ, what current flows to the hemisphere? 

 

 
 

 

 

 

 

Problem 6: 

At the beginning of the development of modern quantum mechanics, N. Bohr and A. 

Sommerfeld formulated a “quantization prescription” for periodic motion.   Accordingly, only 

such trajectories in phase space are admitted for which the phase integral that extends over a 

period of motion                             is a multiple of Planck’s action quantum  . 

The generalized coordinates and canonically conjugate momenta are        , respectively.  

(a)  Write the Lagrangian, Hamiltonian,  Hamilton equations,  and constants of motion for a 

particle with mass m and potential energy U(r) = -e
2
/r, with e

2
 = qe

2
/(40). 

(b) Apply the “quantization prescription” to pr and pφ, the conjugate momenta of the spherical 

coordinated r and φ. 

(c)  Calculate the bound energy states of the hydrogen atom from the quantization prescription. 

Useful integral:   

 
  



Problem 7: 

The state of a free particle at time t is described by the following wave function: 

 



(x) 

0 for x  b

A for  b  x  3b 

0 for x  3b









 

  

(a)  Find A using the normalization condition.  (You may choose the phase convention such that 

A is real.) 

(b)  What is the probability of finding the particle within the interval [0, b]? 

(c)  Calculate <x> and <x
2
> for this state.  

(d)  Calculate the momentum probability density.  

(e)  Calculate <p> for this state. 

 

 

 

 

 

 

 

Problem 8: 
An electron with mass me and 

momentum pe hits a positron  

(same mass but opposite charge)  at 

rest.  They annihilate producing 

two photons.  (Why couldn’t they 

produce just one photon?)  

(a)  Following the collision, the 

scattered photon is deflected by an 

angle, θ.  Find the photon’s energy if it emerges at angle θ.  

(b)  What are the maximum and minimum energy an emitted photon can have, and at what 

emission angles do these occur? 

(c)  Express your result from part (b) in terms of the total energy ECM available in the center of 

momentum frame and the speed v of the CM frame with respect to the laboratory frame.  

Interpret your result. 

 


