
January 2016 Qualifying Exam 
 

Part II 
 

Mathematical tables are allowed.  Formula sheets are provided. 

Calculators are allowed. 

Please clearly mark the problems you have solved and want to be graded.  Do only 
mark the required number of problems. 

 

Physical Constants: 

Planck constant:  h = 6.62606896 * 10-34 Js,  ħ = 1.054571628 * 10-34 Js  
Boltzmann constant:  kB = 1.3806504 * 10-23 J/K  
Elementary charge:  e = 1.602176487 * 10-19 C  
Avogadro number:  NA = 6.02214179 * 1023 particles/mol  
Speed of light:  c = 2.99792458 * 108  m/s  
Electron rest mass:  me = 9.10938215 * 10-31 kg  
Proton rest mass:  mp = 1.672621637 * 10-27 kg  
Neutron rest mass:  mn = 1.674927211 * 10-27 kg  
Bohr radius:  a0 = 5.2917720859 * 10-11 m  
Compton wavelength of the electron:  λc = h/(mec) = 2.42631 * 10-12 m 
Permeability of free space:  μ0 = 4π 10-7 N/A2 
Permittivity of free space:  ε0 = 1/μ0c2 
Gravitational constant: G = 6.67428 * 10-11 m3/(kg s2) 
Stefan-Boltzmann constant:  σ = 5.670 400 * 10-8 W m-2 K-4 
Wien displacement law constant:  σw = 2.897 7685 * 10-3 m K    
Plank radiation law:  I(λ,T) = (2hc2/λ5)[exp(hc/(kT λ)) – 1]-1 

Useful Integrals: 

∫ dx √x/√(b – x) = √(bx – x2) - ½b*sin-1((2x - b)/b) 
 
∫ xdx/(a - bx + cx2)3/2 = (4a - 2bx)/[(b2 – 4ac)(a - bx + cx2)1/2] 
 
 
  



Solve 6 out of the 8 problems!  (All problems carry the same weight)  

Problem 1: 
A particle of mass m is released a distance b from a fixed origin of force that attracts the particle 
according to the inverse square law F(x) = – k/x2.   Find the time required for the particle to 
reach the origin.  Use this result to show that, if the Earth were suddenly stopped in its orbit, it 
would take approximately 65 days for it to collide with the Sun.   Assume that the Sun is as a 
fixed point mass and Earth’s orbit is circular. 

Problem 2: 
Consider a particle in the ground state of a one-dimensional  
square well of width a and depth V0. 
Assume that the well is very deep and  

(2m(E + V0)/(2mV0))1/2 << 1  

for the ground state, so that the ground state wave function  
is nearly identical to that of the infinite square well.   
At t = 0, a time dependent perturbation W(t) = Wcosωt is turned on.   
What is the minimum frequency necessary to free the particle from  
the well?  For frequencies greater than this minimum frequency,  
use perturbation theory to find the transition rate.   
You can assume that the free particles will be in a box of size L >> a. 

Problem 3: 
A model of the hydrogen atom was proposed before the advent of quantum mechanics, which 
consists of a single electron of mass m and an immobile uniform spherical distribution of 
positive charge with radius R.  Assume that the positive charge interacts with the electron via 
the usual Coulomb interaction but otherwise does not offer any resistance to the motion of the 
electron. 
 
(a)  Explain why the electron’s equilibrium position is at the center of the positive charge. 
 
(b)  Show that the electron will undergo simple harmonic motion if it is displaced a distance  
d < R away from the center of the positive charge.  Calculate its frequency of oscillation. 
 
(c)  How big would the atom need to be in order to emit red light with a frequency of 
4.57*1014 Hz?  Compare your answer with the radius of the hydrogen atom. 
 
(d)  If the electron is displaced a distance d > R from the center, will it oscillate in 
position?  Will it undergo simple harmonic motion?  Explain! 
  



Problem 4: 
Assume magnetic charges exist and Maxwell's equations are of the form 
∇∙E = ρ/ε0,   ∇∙B = μ0ρm,   -∇×E = μ0jm + ∂B/∂t,   ∇×B = μ0j + μ0ε0∂E/∂t. 
Assume a magnetic monopole of magnetic charge qm is located at the origin, and an electric 
charge qe is placed on the z-axis at R distance a from it. 

(a)  Write down expressions for the electric field E(r) and the magnetic field B(r).  Make a 
sketch. 

(b)  Write down expressions for the momentum density g(r) and angular momentum density ℒ(r) 
of the electromagnetic field. 

(c)  Show that there is electromagnetic angular momentum Lz about the z-axis and derive an 
expression for it. 

Useful vector identity:  (a∙∇)n = (1/r)[a - n(a∙n)].   Here n is r/r is the unit radial vector. 

 

 

Problem 5:  
Consider a particle of mass m in an one-dimension infinite square well of length L.  Assume that 
the particle is in the nth eigenstate (n = 1, 2, 3, … ,). 

(a)  The momentum is measured.  Show that the probability distribution Pn(k) for measuring a 
momentum p = ħk is Pn(k) = [2πLn2(k2L2 – n2π2)2] [1 + (-1)n+1cos(kL)]. 

(b)  What outcome of a momentum measurement is most likely?  Does your result agree with 
your intuition? 

(c)  Which momenta cannot be the result of a momentum measurement?  Why is that so? 

  



Problem 6: 
In the following, two examples of a decaying system are presented, where the decay products 
travel with velocities comparable to the speed of light c. 
1. Two electrons are ejected simultaneously in opposite directions from an atom.  Each electron 
has a speed as measured by a laboratory observer of 0.5 c.  What is the speed of one electron as 
seen from the rest frame of the other electron 
(a)  in the non-relativistic approach? 
(b)  in the relativistic approach? 
Distinguish carefully the velocities in the respective frames. 

2. The neutral pi meson, π°, has a rest mass of 135 MeV/c2.  It decays into two photons (γ rays) 
of equal energy and opposite direction in its rest frame.  In the laboratory frame the π° is moving 
with a total energy 25% larger than its rest energy. 
(a)  What are the energies of the γ rays, as measured in the laboratory, if the decay process 
causes them to be emitted in opposite directions along the pion's original line of motion? 
(b)  What is the velocity of each γ ray as observed by the other? 

 

 

Problem 7: 
Consider a bead of mass m sliding freely on a smooth circular  
wire of radius b which rotates in a horizontal plane about one  
of its points O, with constant angular velocity Ω.  Let θ be the  
counterclockwise angle between the diameter that passes  
through the mass and the diameter that passes through the point O,  
with θ = 0 the case where the mass is farthest from O.  

 
 
(a)  Find the equation of motion for θ.  Compare this equation with the equation of motion for a 
simple pendulum (point mass and massless rod). 
 
(b)  For the initial conditions θ = 0, dθ/dt = ω0 at t = 0, describe the θ motion that occurs for  
|ω0| < 2Ω and for |ω0| > 2Ω.  (Note:  The same equations have the same solutions.) 

(c)  Describe the θ motion that occurs for |ω0| << 2Ω. 
 

  



Problem 8: 
A muonic atom is one in which an atomic electron is replaced by a muon.  The muon is 209 
times more massive than the electron.  

(a)  Compute the energy of the 2p – 1s muonic transition in 208Pb (Z = 82) under the assumption 
that Pb is a point nucleus.   Make reasonable assumptions and explain your assumptions.   
Compare your result with the observed value of 5.8 MeV. 

(b)  Use the transition-energy values computed and given in part (a) and simple scaling rules for 
hydrogenic atoms to give an order-of-magnitude estimate of the nuclear radius of Pb (whose 
actual nuclear charge radius is ~ 6 fm). 

(c)  Use perturbation theory to calculate the first-order shift in the ground-state energy of an 
electron in hydrogenic  208Pb (Z = 82) due to the finite size of this nucleus.  Assume the nucleus 
is a uniformly charged sphere.  Why is this not a valid approach for the muonic Pb atom? 

The ground state wave function of the hydrogen atom is |1,0,0> = (πa0
3)-1/2exp(-r/a0). 
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