Spring 2012 Qualifying Exam

Part I

Calculators are allowed. No reference material may be used.
Please clearly mark the problems you have solved and want to be graded. Mark exactly eight problems in section I and three problems in Section II.

Physical Constants:

Planck constant: $\mathrm{h}=6.62606896 * 10^{-34} \mathrm{Js}, \hbar=1.054571628 * 10^{-34} \mathrm{Js}$
Boltzmann constant: $\mathrm{k}_{\mathrm{B}}=1.3806504 * 10^{-23} \mathrm{~J} / \mathrm{K}$
Elementary charge: $\mathrm{e}=1.602176487 * 10^{-19} \mathrm{C}$
Avogadro number: $\mathrm{N}_{\mathrm{A}}=6.02214179 * 10^{23}$ particles $/ \mathrm{mol}$
Speed of light: $c=2.99792458 * 10^{8} \mathrm{~m} / \mathrm{s}$
Electron rest mass: $\mathrm{m}_{\mathrm{e}}=9.10938215 * 10^{-31} \mathrm{~kg}$
Proton rest mass: $\mathrm{m}_{\mathrm{p}}=1.672621637 * 10^{-27} \mathrm{~kg}$
Neutron rest mass: $\mathrm{m}_{\mathrm{n}}=1.674927211 * 10^{-27} \mathrm{~kg}$
Bohr radius: $\mathrm{a}_{0}=5.2917720859 * 10^{-11} \mathrm{~m}$
Compton wavelength of the electron: $\lambda_{\mathrm{c}}=\mathrm{h} /\left(\mathrm{m}_{\mathrm{e}} \mathrm{c}\right)=2.42631 * 10^{-12} \mathrm{~m}$
Permeability of free space: $\mu_{0}=4 \pi 10^{-7} \mathrm{~N} / \mathrm{A}^{2}$
Permittivity of free space: $\varepsilon_{0}=1 / \mu_{0} \mathrm{c}^{2}$
Gravitational constant: $\mathrm{G}=6.67428 * 10^{-11} \mathrm{~m}^{3} /\left(\mathrm{kg} \mathrm{s}^{2}\right)$
Stefan-Boltzmann constant: $\sigma=5.670400 * 10^{-8} \mathrm{~W} \mathrm{~m}^{-2} \mathrm{~K}^{-4}$
Wien displacement law constant: $\sigma_{w}=2.8977685 * 10^{-3} \mathrm{~m} \mathrm{~K}$
Units: $1 \mathrm{kcal}=4186 \mathrm{~J}$

Section I:

Work 8 out of 10 problems, problem 1 - problem 10! (8 points each)

Problem 1:

Eight small spheres with uniform surface charge (open circles) are fixed at regular intervals on a circle with radius $\mathrm{R}=2 \mathrm{~m}$ in the xy -plane. Each sphere carries $\mathrm{Q}=-5 * 10^{-9} \mathrm{C}$ of negative charge. Assuming the potential of the charge configuration to be zero at infinity, what is the potential at the center of the circle?

Problem 2:

For a harmonic oscillator potential centered at $\mathrm{x}=0$ the expectation values below are given.

$$
\begin{array}{ll}
\langle x\rangle=0 & \left\langle p_{x}\right\rangle=0 \\
\left\langle x^{2}\right\rangle=\frac{\hbar^{2}}{2 m^{2} \omega_{0}^{2}} & \left\langle p_{x}^{2}\right\rangle=\frac{m^{2} \omega_{0}^{2}}{2}
\end{array}
$$

Why is the harmonic oscillator known as a minimum uncertainty potential?

Problem 3:

A worker sitting on top of the roof of a house drops a hammer. The roof is smooth and slopes at an angle of 30° to the horizontal. It is 10 m long and its lowest point, where it meets the vertical wall, is 10 m above the ground. How far from the house wall is the hammer when it hits the ground?

Problem 4:

What must be the initial velocity of a projectile to leave the earth? The air friction is to be neglected! (mean radius: $\mathrm{R}_{\text {Earth }}=6371 \mathrm{~km}$)

Problem 5:

What is the lowest energy a photon can have in order to produce an electron-positron pair in the presence of a nucleus of mass M?

Problem 6:

A building at a temperature T (in K) is heated by an ideal heat pump with coefficient of performance $\mathrm{COP}_{\max }=\mathrm{Q}_{\text {low }} /\left(\mathrm{Q}_{\text {high }}-\mathrm{Q}_{\text {low }}\right)=\mathrm{T}_{\text {low }} /\left(\mathrm{T}_{\text {high }}-\mathrm{T}_{\text {low }}\right)$. The heat pump uses the atmosphere at $\mathrm{T}_{0}(\mathrm{~K})$ as the heat source. The pump consumes power W and the building loses heat at a rate $\alpha\left(\mathrm{T}-\mathrm{T}_{0}\right)$. What is the equilibrium temperature of the building?
Express your answer in terms of α, W and T_{0}.

Problem 7:

Find the electric field \mathbf{E} and the electric displacement \mathbf{D} produced by a thin rectangular slab with permanent uniform polarization \mathbf{P} as shown in the figure. Ignore edge effects.

Problem 8:

How fast would you need to be driving such that a red light $\left(\lambda_{0}=675 \mathrm{~nm}\right)$ appears yellow ($\lambda=$ $575 \mathrm{~nm})$?

Problem 9:

An infinitely long charged wire with linear charge density λ is surrounded by an infinite conducting shell with inner and outer radius R_{1} and R_{2}, respectively.
(a) Find the electric field in all regions of space.
(b) Find the surface charge density on the surfaces of the conducting shell.

Problem 10:

0.5 kg of a hot metal at $80^{\circ} \mathrm{C}$ is dropped into a very large pool of water at $20^{\circ} \mathrm{C}$. The specific heat of the metal at constant pressure is independent of temperature, with a value of $\mathrm{C}=100 \mathrm{~J} /(\mathrm{kg}-\mathrm{K})$.
(a) How much does the entropy of the metal change?
(b) How much does the total entropy (of both the metal and water) change? Does it increase or decrease?

Section II:

Work 3 out of the 5 problems, problem 11 - problem 15! (12 points each)

Problem 11:

(a) Define what is meant by the term "stationary state" in quantum mechanics, and explain the distinction between the time-dependent and time-independent Schrödinger equation.
(b) At time $t=0$, the wave function of a particle in one dimension is $\psi(x)=\left(u_{1}(x)+u_{2}(x)\right) / \sqrt{2}$, where $u_{1}(x)$ and $u_{2}(x)$ are two solutions of the time-independent Schrödinger equation. For this particle, how does the probability density change with time?

Problem 12:

Let a particle of mass m be positioned at the "north pole" of a frictionless smooth hemisphere of radius R. After a small displacement it slides down at the hemisphere.
(a) Find the angle θ when the particle separates from the hemisphere.
(b) What is its speed in that moment?

Problem 13:

An electromagnetic wave passes through a boundary between two media with $n_{1}=1$ and $n_{2}=3$ at near-normal incidence of $\theta_{i}=0.5$ degree.
(a) Find the angle θ_{t} of the transmitted wave
(b) Find the reflectance and the transmittance for the wave.

Problem 14:

A disk of radius r is released from rest at a point where its center-of-mass is a distance h higher than when the disk is on the floor. The disk then rolls without slipping down an inclined track. At the floor level it rolls into a circular loop of radius R .

Find the minimum starting height h needed to ensure that the disk will remain in contact with the track at all times for the case that $\mathrm{r}=1 / 3 \mathrm{R}$. Express the answer in terms of R .

The moment of inertia for the disk is $\mathrm{I}=\mathrm{mr}^{2} / 2$.

Problem 15:

A conducting circular loop made of wire of diameter d , resistivity ρ, and mass density ρ_{m} is falling from a great height h in a magnetic field with a component $B_{z}=B_{0}(1+k z)$, where k is some constant. The loop of diameter D is always parallel to the $\mathrm{x}-\mathrm{y}$ plane. Disregard air resistance, and find the terminal velocity of the loop.

