
Fall 2010 Qualifying Exam 

 

Part II 
 
 

Mathematical tables are provided.  Formula sheets are provided. 
 
Calculators are allowed. 
 
Please clearly mark the problems you have solved and want to be graded.  Do only 
mark the required number of problems. 
 
 
Physical Constants: 
 
Planck constant:  h = 6.62606896  10-34 Js,   = 1.05457266  10-34 Js  

Boltzmann constant:  kB = 1.3806504  10-23 J/K  
Elementary charge:  e = 1.60216487  10-19 C  
Avogadro number:  NA = 6.02214179  1023  particles/mol  
Speed of light:  c = 2.99792458  108  m/s  
Electron rest mass:  me = 9.10938215  10-31 kg  
Proton rest mass:  mp = 1.672621637  10-27 kg  
Neutron rest mass:  mn = 1.674927211  10-27 kg  
Bohr radius:  a0 = 5.2917720859  10-11 m  
Compton wavelength of the electron:  c = h/(me c) = 2.42631  10-12 m 
Permeability of free space:  0 = 4 10-7 N/A2 
Permittivity of free space:  0 = 1/0c

2 
Gravitational constant: G = 6.67428  10-11 m3/(kg s2) 
Stefan-Boltzmann constant:   =   5.670 400  10-8 W m-2 K-4 
Wien wavelength displacement law constant:  w = 2.897 7685  10-3 mK    



Solve 6 out of the 8 problems!  (All problems carry the same weight)  
 
Problem 1:  
 
A cylindrical capacitor of length L, with an inner radius a and outer 
radius b, is filled with a solid dielectric (permittivity ).  If we can 
ignore the top/bottom end effects,  
(a)  find the electric field for a < r < b when the charge on the 
capacitor is Q; 
(b)  find the capacitance; 
(c)  A potential difference V is maintained between the two 
cylinders. The solid dielectric is displaced down by a distance  
x < L.  Find the total capacitance now, and 
(d)  find the magnitude and direction of the force acting on the solid dielectric. 
 
Problem 2: 
A simple pendulum of mass m2 and length l is constrained to move in a single plane.  The point 
of support is attached to a mass m1 which can move on a horizontal line in the same plane.   
(a)  Find the Lagrangian of the system in terms of suitable generalized coordinates. 
(b)  Derive the equations of motion.  
(c)  Find the frequency of small oscillations of the pendulum. 
 
 

Problem 3: 
An object on a planar platform moves in an elliptical trajectory described by 

x(t) = x1 + x2 cos(t),   y(t) = y1 + y2 sin(t), 
where x and y are measured with respect to a coordinate system fixed on the platform.  The 
platform is rotating with respect to an inertial coordinate system XYZ.  The two coordinate 
systems XYZ and xyz are the same at time t = 0.  The axis of rotation is the Z-axis, but the 
angular speed of rotation is fluctuating with time and is given by  

(t) = 1 + 2 sin(t). 
Find an expression for the velocity components Vx and Vy of the object in the inertial frame at 
time t . 
 
  



Problem 4:  
A one-dimensional harmonic oscillator has mass m and angular frequency .  Denoting the 
momentum by p and the coordinate by x, we can define the operators  

  ,      , 

where ,      . 

 
(a)  Find , . 
 
(b)  Find the Hamiltonian in terms of  and . 
 
(c)  These operators, when acting over the eigenstates of the harmonic oscillator with quantum 
number n, denoted by |n>, have the property  

    √ 1 1 , √ 1 .  
Find the ground state expectation value of x4. 
Show your work! 

 
 
 
Problem 5: 
Inside a blackbody cavity, the energy density per unit frequency interval,(), is given by 
Planck’s formula 

/ . 
(a)  Derive an expression for the intensity per unit frequency interval, I(), of the radiation 
emitted by the blackbody. 
(b)  Derive the Stefan-Boltzman law. 
(c)  Derive Wien’s displacement law.  
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Problem 6: 
Consider a one-dimensional quantum-mechanical scattering problem, involving a particle of 
mass m moving through a region with potential energy function 

  ,   0 ,       0  otherwise. 
The particle moves from - to +.  Assume that its energy is chosen to be exactly V0. 
Find the transmission and the reflection probabilities. 
 
  



Problem 7: 
A pair of parallel conducting rails a distance d apart is placed in a uniform magnetic field B 
which is perpendicular to the rails.  A resistance R is connected across the rails and a conducting 
bar of mass m and negligible resistance is placed at rest on the rails and perpendicular to them.  
A constant force F is applied to the bar pulling it along the rails. 
(a)  What is the value of v when the bar's acceleration becomes zero? 
(b)  Derive an expression for the speed v(t) of the bar as a function of time. 
(c)  If F is suddenly reduced to zero at time t’ = ln(2) mR/(Bd)2, find the rate of decrease of the 
kinetic energy of the bar for t > t’. 
(d)  Show that the rate of decrease of the kinetic energy of the bar is equal to the ohmic heating 
rate. 
 
 

Problem 8: 
The Hamiltonian matrix for a two-state system can be written as  

Δ

Δ
  . 

Clearly the eigenfunctions for the unperturbed problem (λ = 0) are given by  

1
0
,          0

1
. 

(a) Solve this problem exactly to find the eigenvalues E1 and E2 of H. 
Examine your expressions for E1 and E2 when making two different assumptions.  

   (i)  Assume that  λ|Δ|  <<  |E
1

0 
− E

2

0
|.  Expand the expressions for E1 and E2 in powers 

         of  (λΔ)2/(E
1

0 
− E

2

0
)2, and keep only terms up to first order. 

   (ii) Assume that E
1

0 
= E

1

0 
= E and simplify the expressions for E1 and E2. 

(b) Assuming that λ|Δ|  <<  |E
1

0 
− E

2

0
|, solve the same problem using time-independent 

perturbation theory up to first order in the energy eigenfunctions and up to second order in the 
energy eigenvalues.  Compare the eigenvalues with the results obtained in part (a).  

(c) Suppose the two unperturbed energies are “almost degenerate,” that is, |E
1

0 
− E

2

0
|  <<  λ|Δ|.  

Show that the exact results obtained in (a) closely resemble what you would expect by applying 

degenerate perturbation theory to this problem with E1
0 
set exactly to equal to E

2

0
. 

 


