## Problem 1: (A)

Sinusoidal plane waves:  $\hat{z} \cdot \vec{r} = z$ ,  $\exp(i(kz + \omega t))$  represents a wave moving in the negative z-direction.

 $\hat{x} - \hat{y}$  is a real vector pointing along the diagonal.



Problem 2: (E)

Critical angle for total internal reflection:  $\sin\theta = (1/n) = 2/3$ ,  $\cos\theta = (5/9)^{1/2}$ .

What is the angle for the shockwave? (When do we have constructive interference?) Consider the emission of two successive crests.





We have constructive interference when  $\cos\theta = vT/(v_sT) = v/v_s$ .

Here  $v_s = \beta c$  and v = c/n. Therefore  $\cos \theta = 1/(\beta n)$ .

$$(9/5)^{1/2} = n\beta, \ \beta = (2/3) \ (9/5)^{1/2} = (36/45)1^{/2} = (4/5)^{1/2}.$$

# Problem 3: (C)

Doppler shift for sound: Both observer and source are moving with the same velocity with respect to the medium.

[Let v = speed of sound.

$$f = f_0(v - v_{obs})/(v - v_s)$$

where  $v_{obs}$  and  $v_s$  are not the speeds, but the components of the observer's and the source's velocity in the direction of the velocity of the sound reaching the observer.

f increases if the source and the observer approach each other and decreases if they recede from each other.]

#### Problem 4: (B)

Thin film interference: When a light wave reflects from a medium with a larger index of refraction, then the phase shift of the reflected wave with respect to the incident wave is  $\pi$  (180°). When a light wave reflects from a medium with a smaller index of refraction, then the phase shift of the reflected wave with respect to the incident wave is zero.

 $2n_{water}t = (m + 1/2) \lambda$ , m = 0,1,2,... For constructive interference  $\lambda = 2*1.33*t/(m+1/2)$ ,  $\lambda_1/\lambda_0 = 0.5/1.5 = 1/3$ .  $\lambda_1 = 540/3$  nm.



Problem 5: (E)

Focal length of a thin lens:  $1/f = (n-1)(1/R_1 - 1/R_2)$ 

Problem 6: (D)

Diffraction:  $w \sin\theta = m \lambda \rightarrow diffraction minima$ 

0.14m $/1.41 = \lambda = 350$ /f.

Problem 7: (B)

Interference: A hologram is an interference pattern.

Problem 8: (E)

Phase: 6 boxes =  $360^{\circ}$ , phase difference = 2 boxes =  $120^{\circ}$ .

Problem 9: (D)

Double slit interference: We only get zero intensity at the minima of the double slit interference pattern if the single slit intensity at that position is the same for both slits.

Problem 10: (C)

**Resolution limit:**  $\theta_{min} = 1.22 \lambda / D \sim \lambda / D$ .

 $D \sim \lambda/\theta_{min} = 0.07 \text{ m}.$ 

Problem 11: (D)

Linear polarizers:  $I = I_0 \cos^2(\theta)$ , where  $\theta$  is the angle between the polarization and the transmission axis.

Unpolarized light  $\rightarrow$  first polarizer transmits 50%. Second polarizer transmits 50% of the light that passed through the first polarizer.

Problem 12: (E)

Doppler shift for EM waves:  $f' = f^*([1-v/c)/(1+v/c)]^{1/2}$ , (1/16)(1+v/c) = (1-v/c). 15/16 = (v/c)(17/16), v/c = 15/17.

### Problem 13: (B)

Fourier Series: Let f(t) be a periodic function. Then we may write

 $f(t) = A_0/2 + \sum_{n=1}^{\infty} A_n cos(\omega_n t) + \sum_{n=1}^{\infty} B_n sin(\omega_n t)$ 

For the given f(t) = V(t), an odd function, all the  $A_n$  must be zero. The  $B_n$  with n = even also must be zero, since the associated sine functions look the same in the interval where V(t) is positive and where V(t) is negative.

### Problem 14: (E)

Mirror equation:  $1/x_0 + 1/x_i = 1/f = 2/R$  (Remember the sign convention!)

Here the radius of curvature is negative.  $1/R + 1/x_i = -2/R$ ,  $x_i = -R/3$ .

# Problem 15: (D)

Superposition of waves: The displacements add vectorially.