Problem 1: (D)

Stern Gerlach experiment

The magnetic moment μ of an atom is proportional to its angular momentum J and therefore is quantized. The Stern–Gerlach experiment involves sending a beam of particles through an inhomogeneous magnetic field and observing their deflection.

 $F_z = \mu_z dB_z/dz$.

If j_z can take on 2j + 1 different values, μ_z can take on 2j + 1 different values, and we expect 2j + 1 different deflection angles. For Sodium $j = s = \frac{1}{2}$. (One 3s electron outside closed shells.)

Problem 2: (A) Diode-bridge rectifier

Problem 3: (C) Logic gates (<u>http://en.wikipedia.org/wiki/Logic_gate</u>)

inputs		the output c						
a	ь	and	or	nand	nor	not	xor	
		a b	a+b	ab	a+b	а	$a \oplus b$	
0	0	0	0	1	1	1	0	
0	1	0	1	1	0	1	1	
1	0	0	1	1	0	0	1	
1	1	1	1	0	0	0	0	
Boolean logic operations								

 $\begin{array}{l} \text{AND} \ A \cdot B \\ \text{OR} \ \ \underline{A} + B \\ \text{NOT} \ \ \overline{A} \text{ or } \text{ } \text{ } \text{ } A \end{array}$

Schematic notation for digital logic gates

Problem 4: (B) Compton scattering $\Delta \lambda = (\lambda_f - \lambda_i) = [h/(mc)](1 - \cos\theta).$

Problem 5: (A) Interpreting a log-log plot A function of the form $y = ax^b$ will appear as a straight line on a log-log plot.

Problem 6: (C) Franck-Hertz experiment http://hyperphysics.phy-astr.gsu.edu/hbase/FrHz.html Problem 7: (B) Random processes A almost immediately decays into B. For B: $dN/dt = -\lambda N$, $N(t) = N_0 exp(-\lambda t)$, $\tau = 1/\lambda = mean$ life. $dN/dt = -N/\tau = -10^{22}/10$ years = $-10^{21}/y$ ear. Problem 8: (B)

Stopping potential $eV = hf - \Phi$

Problem 9: (A) Pumps

Pump	Lowest Attainable Pressure	Typical Use
Mechanical pump	10 ⁻³ - 10 ⁻⁴ torr	roughing or backing pump
Diffusion pump	10 ⁻⁶ torr	vacuum lines
Turbomolecular pump	10 ⁻⁹ torr	high-vacuum systems

Problem 10: (B) Error propagation Weighted average = $\frac{\sum_i w_i x_i}{\sum_i w_i}$, $w_i = \frac{1}{(\Delta x)^2}$. Let a = 11, b = 10.

$$c = \frac{1 \cdot a + \frac{1}{4} \cdot b}{1 + \frac{1}{4}} = \frac{4a + b}{5} \quad , \qquad \Delta c = \sqrt{\left(\frac{\partial c}{\partial a} \Delta a\right)^2 + \left(\frac{\partial c}{\partial b} \Delta b\right)^2}$$
$$\Delta c = \sqrt{\left(\frac{4}{5} 1\right)^2 + \left(\frac{1}{5} 2\right)^2} = \sqrt{\frac{16}{25} + \frac{4}{25}} = \sqrt{\frac{20}{25}} = \sqrt{\frac{4}{5}} = \frac{2}{\sqrt{5}}$$

Problem 11: (A) Non-contact measurement, (Planck radiation law)

Problem 12: (C) Proportional counters

Problem 13: (D) Gas laser

Problem 14: (E) Conservative vector fields

Problem 15: (B) Hermitian matrices This is not a Hermitian matrix.