Problem 1: (C) Atomic dimensions The "diameter" of the hydrogen atom is approximately 1 A.

Problem 2: (B) Kinetic theory $\frac{1}{2} m < v^2 > = (3/2)kT$

Problem 3: (B) The proper time interval

t' is the proper time interval. The time between the events in the laboratory frame is γ t', during this time the rocket travels a distance γ t'.

Problem 4: (C)

Acceleration, energy conservation

The block accelerates as long as the gravitational force is greater than the elastic force. It has maximum kinetic energy when mg = kx, x = mg/k.

 $E = \frac{1}{2}mv^2 = mg(h + x) - \frac{1}{2}kx^2 = mgh + \frac{m^2g^2}{(2k)}.$

Problem 5: (C) Entropy

 $\Delta S = S_2 - S_1 = \int_1^2 \frac{dQ}{T} \, .$

The entropy of the gas in process 3 decreases and therefore the entropy of the reservoir (4) increases, since the total entropy for a reversible process does not change.

Problem 6: (A) Hooke's law $\omega = (k/m)^{1/2}$. T = $2\pi/\omega$, T₂/T₁ = $(m_2/m_1)^{1/2}$

Problem 7: (E)

RLC circuits

Look at the limiting cases. When ω becomes very small the inductor approaches a short circuit, when ω becomes very large, the capacitor approaches a short circuit. In both cases I becomes very large. Formal solution: I = V/Z

$$\begin{split} 1/Z &= 1/R + 1/(i\omega L) + i\omega C = 1/R + i(\omega C - 1/(\omega L)) = (1/R^2 + (\omega C - 1/(\omega L))^2)^{1/2} exp(i \quad \Box) \\ |I| &= |V|/(1/R^2 + (\omega C - 1/(\omega L))^2)^{1/2}. \end{split}$$

Problem 8: (A) Photomultipliers

Problem 9: (E) Conservation Laws Problem 10: (D) Alpha decay

Problem 11: (B) LS coupling L = 0, S = 1, J = L + S = 1

Problem 12: (E) Resistors in series and parallel: $1/R_t = 1/R + 1/(2R) = (3/2)R$. I = V/R_t = 3V/(2R).

Problem 13: (E) Range formula $R = (2v_0^2 \cos\theta_0 \sin\theta_0)/g = (v_0^2 \sin 2\theta_0)/g.$

Problem 14: (B) Motion of a charged particle in a magnetic field

$$m\frac{v^2}{R} = qvB$$
, $v = \frac{qBR}{m}$, $\frac{v_{\alpha}}{v_p} = \frac{q_{\alpha}m_p}{q_pm_{\alpha}} = \frac{1}{2}$.

Problem 15: (D) Special Relativity $T = \gamma mc^2 - mc^2 = mc^2(1/(1-v^2/c^2)^{1/2} - 1)$. As $v \rightarrow c, T \rightarrow$ infinity.

Problem 16: (B) Conductors in electrostatics Conductors in contact have the same potential.

Problem 17: (E) Newton's 2nd law The magnitude of the restoring force is not proportional to m.

Problem 18: (E) Rayleigh scattering

Problem 19: (B)

Speed of sound

The speed of sound should be proportional to the average speed of the gas molecules. $\frac{1}{2}$ mv² = (3/2)kT.

Problem 20: (B)

 $F_{avg} = \Delta p / \Delta t$ $F_{avg} = \Delta p / \Delta t = \Delta mv / t = (20*10^{-3} * 1200 * 600 / 60) N = 240 N$ Problem 21: (E) Polarization Linearly polarized light: $\phi = n\pi$, n = 0, 1, 2, ...

Problem 22: (B) Indistinguishable particles

There are 3 ways of putting the particles in different boxes and leaving one box empty. There are 3 ways of putting the two particles in the same box.

Problem 23: (D) Degrees of freedom

In 2D, each point particle has two degrees of freedom.

Problem 24: (B) Energy conservation

Problem 25: (D)

Ampere's law

Let $\lambda = I/w$. Apply Ampere's law to a strip of width dx carrying current λdx .

The magnitude of the magnetic field a perpendicular distance ρ from this strip is B = $\mu_0 \Delta \lambda dx/(2\pi \rho)$. The direction is given by the right-hand rule. Integrate to find B at P.

$$B = \int_0^w \frac{\mu_0}{2\pi (r+x)} \frac{I}{w} dx = \frac{\mu_0 I}{2\pi w} \ln(r+x) \Big|_0^w = \frac{\mu_0 I}{2\pi w} \ln\left(\frac{r+w}{r}\right)$$