Problem 1: (D)

Relativistic energy: $E^2 = p^2c^2 + m^2c^4$, $p^2c^2 = (10^4 - 1)m^2c^4$, $pc \sim 100 \text{ mc}^2$.

Problem 2: (B)

Energy and momentum conservation:

$$Mc^2 = (m^2c^4 + p^2c^2)^{1/2} + pc$$
, $M^2c^4 - 2Mpc^3 = m^2c^4$, $p = (M^2 - m^2)c/(2m)$

Problem 3: (B)

Length contraction: L' = L/γ , $\gamma = (1 - 0.64)^{-1/2} = 1/0.6$. $t = (0.6 \text{ m})/(0.8*3*10^8 \text{ m/s}) = 2.5 \text{ ns}$

Problem 4: (D)

Moment of inertia about an axis: $I = \sum_{i=1}^{n} r_i^2$ I_y is the smallest

Problem 5: (D)

Hamilton's equations of motion: $\dot{q}_i = \frac{\partial H}{\partial p_i}$, $\dot{p}_i = -\frac{\partial H}{\partial q_i}$

Problem 6: (D)

The Lagrangian L = T - U: $T = \frac{1}{2}M \dot{X}^2 + \frac{1}{2}m(\dot{X} + \dot{X})^2$, $U = \frac{1}{2}kx^2$.

Problem 7: (C)

Relativistic energy: $E^2 = p^2c^2 + m^2c^4 = 16 \text{ m}^2c^4$, $p^2c^2 = 15 \text{ m}^2c^4$, $pc = 15^{1/2} \text{ m}c^2$.

Problem 8: (A)

Conservation of angular momentum: A central force conserves angular momentum. Kepler's second law is a statement of angular momentum conservation.

Problem 9: (B)

Length contraction and velocity addition: L' = L/γ , $1/\gamma = 0.6 = (1 - v^2/c^2)^{1/2}$, v = 0.8 c is the speed of one spaceship with respect to the other.

$$0.8 c = (v' + v')/(1 + v'^2/c^2)$$
. $0.8 + 0.8 v'^2/c^2 = 2 v'/c$. $v'/c = 0.5$

Problem 10: (B)

Transformation of the electromagnetic fields

Problem 11: (C)

Time dilation:
$$t = \gamma \tau$$
. $\gamma = (1 - v^2/c^2)^{-1/2}$, $\gamma = 5/3$, $t = (11/3)*10^{-6}$ s. $d = (4/5)*3*10^8$ m/s * $(11/3)*10^{-6}$ s = $(44/5)*10^2$ m

Problem 12: (E)

Cyclic coordinates: The coordinate ϕ is cyclic, p_ϕ is a constant of motion.

Problem 13: (D)

The Lagrangian
$$L = T - U$$
: $T = \frac{1}{2}m(dr/dt)^2 + \frac{1}{2}mr^2(d\theta/dt)^2$, $U = \frac{1}{2}k(r-s)^2$

Problem 14: (C)

The Lorentz transformation:

In the frame O let event 1 have space-time coordinates x=0, t=0, and event 2 have space-time coordinates x=10 m, t=0. In O' let event 1 have t'=0 and event 2 have t'=-13 ns. The Lorentz transformation for event 2 gives $ct'=\gamma ct-\gamma \beta x$, $c*1.3*10^{-8}$ s = $\gamma \beta*10$ m, $\gamma \beta=0.39$. $\beta=0.39/(1+0.39^2)^{1/2}=0.36$.

Problem 15: (A)

Kinematics: All quantities are given in the reference frame of the observer.